Snowflurry Logo

Library reference

Quantum Circuit

Snowflurry.QuantumCircuit — Type.

QuantumCircuit(qubit_count::Int, bit_count::Int, instructions::Vector{AbstractInstruction}, name::String = "default")
QuantumCircuit(circuit::QuantumCircuit)

A data structure to represent a quantum circuit.

Fields

  • qubit_count::Int – number of qubits (i.e., quantum register size).
  • bit_count::Int – Optional: number of classical bits (i.e., result register size). Defaults to qubit_count if unspecified.
  • instructions::Vector{AbstractInstruction} – Optional: the sequence of AbstractInstructions (Gates and Readouts) that operate on qubits. Defaults to empty Vector.
  • name::String – Optional: name of the circuit job, used to identify it when sending to a hardware or virtual QPU.

Examples

julia> c = QuantumCircuit(qubit_count = 2)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:
     
q[2]:

A QuantumCircuit can be initialized containing Gates and Readouts:

julia> c = QuantumCircuit(qubit_count = 2, instructions = [hadamard(1), sigma_x(2), control_x(1, 2), readout(1, 1), readout(2, 2)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H─────────*────✲───────
                 |            
q[2]:───────X────X─────────✲──

A deep copy of a QuantumCircuit can be obtained with the following command:

julia> c_copy = QuantumCircuit(c)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H─────────*────✲───────
                 |            
q[2]:───────X────X─────────✲──

source

Base.push! — Function.

push!(circuit::QuantumCircuit, gates::AbstractGateSymbol...)

Inserts one or more gates at the end of a circuit.

A Vector of AbstractGateSymbol objects can be passed to this function by using splatting. More details about splatting are provided here.

Examples

julia> c = QuantumCircuit(qubit_count = 2);

julia> push!(c, hadamard(1), sigma_x(2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H───────
               
q[2]:───────X──
               



julia> push!(c, control_x(1,2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H─────────*──
                 |  
q[2]:───────X────X──
                    



julia> gate_list = [sigma_x(1), hadamard(2)];

julia> push!(c, gate_list...)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H─────────*────X───────
                 |            
q[2]:───────X────X─────────H──

source

Base.pop! — Function.

pop!(circuit::QuantumCircuit)

Removes the last instruction from circuit.instructions, and returns it.

Examples

julia> c = QuantumCircuit(qubit_count = 2);

julia> push!(c, hadamard(1), sigma_x(2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H───────
               
q[2]:───────X──
               



julia> push!(c, control_x(1, 2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H─────────*──
                 |  
q[2]:───────X────X──
                    



julia> pop!(c)
Gate Object: Snowflurry.ControlX
Connected_qubits	: [1, 2]
Operator:
(4, 4)-element Snowflurry.DenseOperator:
Underlying data ComplexF64:
1.0 + 0.0im    0.0 + 0.0im    0.0 + 0.0im    0.0 + 0.0im
0.0 + 0.0im    1.0 + 0.0im    0.0 + 0.0im    0.0 + 0.0im
0.0 + 0.0im    0.0 + 0.0im    0.0 + 0.0im    1.0 + 0.0im
0.0 + 0.0im    0.0 + 0.0im    1.0 + 0.0im    0.0 + 0.0im

julia> c
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H───────
               
q[2]:───────X──

source

Base.append! — Function.

append!(base_circuit::QuantumCircuit, circuits_to_append::QuantumCircuit...)

Appends one or more circuits_to_append to the base_circuit.

The circuits_to_append cannot contain more qubits than the base_circuit.

Examples

julia> base = QuantumCircuit(qubit_count = 2, instructions = [sigma_x(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X──
          
q[2]:─────
          



julia> append_1 = QuantumCircuit(qubit_count = 1, instructions = [sigma_z(1)])
Quantum Circuit Object:
   qubit_count: 1 
   bit_count: 1 
q[1]:──Z──
          



julia> append_2 = QuantumCircuit(qubit_count = 2, instructions = [control_x(1, 2)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──*──
       |  
q[2]:──X──
          



julia> append!(base, append_1, append_2)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X────Z────*──
                 |  
q[2]:────────────X──

source

Base.prepend! — Function.

prepend!(base_circuit::QuantumCircuit, circuits_to_prepend::QuantumCircuit...)

Prepends one or more circuits_to_prepend to the base_circuit.

The order of the circuits_to_prepend is maintained (i.e., circuits_to_prepend[1] will appear leftmost in base_circuit). The circuits_to_prepend cannot contain more qubits than the base_circuit.

Examples

julia> base = QuantumCircuit(qubit_count = 2, instructions = [sigma_x(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X──
          
q[2]:─────
          



julia> prepend_1 = QuantumCircuit(qubit_count = 1, instructions = [sigma_z(1)])
Quantum Circuit Object:
   qubit_count: 1 
   bit_count: 1 
q[1]:──Z──
          



julia> prepend_2 = QuantumCircuit(qubit_count = 2, instructions = [control_x(1, 2)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──*──
       |  
q[2]:──X──
          



julia> prepend!(base, prepend_1, prepend_2)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Z────*────X──
            |       
q[2]:───────X───────

source

Snowflurry.simulate — Function.

simulate(circuit::QuantumCircuit)::Ket

Simulates and returns the wavefunction of the quantum device after running circuit, assuming an initial state Ket ψ corresponding to the 0th Fock basis, i.e.: ψ = fock(0, 2^get_num_qubits(circuit)).

Note

The input circuit must not include Readouts. For simulating circuits including Readouts, use simulate_shots.

Employs the approach described in Listing 5 of Suzuki et. al. (2021).

Examples

julia> c = QuantumCircuit(qubit_count = 2);

julia> push!(c, hadamard(1))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H──
          
q[2]:─────
          


julia> push!(c, control_x(1, 2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────*──
            |  
q[2]:───────X──
               


julia> ket = simulate(c)
4-element Ket{ComplexF64}:
0.7071067811865475 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.7071067811865475 + 0.0im

source

Snowflurry.simulate_shots — Function.

simulate_shots(c::QuantumCircuit, shots_count::Int = 100)

Emulates a quantum computer by running a circuit for a given number of shots and returning measurement results, as prescribed by the Readouts present in the circuit. The distribution of measured states corresponds to the coefficients in the resulting state Ket.

Examples

julia> c = QuantumCircuit(qubit_count = 2);

julia> push!(c, hadamard(1), control_x(1, 2), readout(1, 1), readout(2, 2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────*────✲───────
            |            
q[2]:───────X─────────✲──


julia> simulate_shots(c, 99)
99-element Vector{String}:
 "11"
 "00"
 "11"
 "11"
 "11"
 "11"
 "11"
 "00"
 "00"
 "11"

 "00"
 "00"
 "11"
 "00"
 "00"
 "00"
 "00"
 "00"
 "00"

source

Snowflurry.get_measurement_probabilities — Method.

get_measurement_probabilities(circuit::QuantumCircuit,
    [target_qubits::Vector{<:Integer}])::AbstractVector{<:Real}

Returns a vector listing the measurement probabilities for the target_qubits in the circuit.

If no target_qubits are provided, the probabilities are computed for all the qubits.

The measurement probabilities are listed from the smallest to the largest computational basis state. For instance, for a 2-qubit QuantumCircuit, the probabilities are listed for $\left|00\right\rangle$, $\left|10\right\rangle$, $\left|01\right\rangle$, and $\left|11\right\rangle$.

Note

By convention, qubit 1 is the leftmost digit, followed by every subsequent qubit. $\left|10\right\rangle$ has qubit 1 in state $\left|1\right\rangle$ and qubit 2 in state $\left|0\right\rangle$

Examples

The following example constructs a QuantumCircuit where the probability of measuring $\left|10\right\rangle$ is 50% and the probability of measuring $\left|11\right\rangle$ is also 50%.

julia> circuit = QuantumCircuit(qubit_count = 2);

julia> push!(circuit, hadamard(1), sigma_x(2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H───────
               
q[2]:───────X──
               



julia> get_measurement_probabilities(circuit)
4-element Vector{Float64}:
 0.0
 0.4999999999999999
 0.0
 0.4999999999999999

For the same circuit, the probability of measuring qubit 2 and finding 1 is 100%.

julia> target_qubit = [2];

julia> get_measurement_probabilities(circuit, target_qubit)
2-element Vector{Float64}:
 0.0
 0.9999999999999998

source

Base.inv — Method.

inv(circuit::QuantumCircuit)

Return a QuantumCircuit which is the inverse of the input circuit. Each gate is replaced by its corresponding inverse, and the order of gates is reversed.

Examples

julia> c = QuantumCircuit(qubit_count = 2);

julia> push!(c, rotation_y(1, pi/4));

julia> push!(c, control_x(1, 2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Ry(0.7854)────*──
                     |  
q[2]:────────────────X──
                        



julia> inv(c)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──*────Ry(-0.7854)──
       |                 
q[2]:──X─────────────────

source

Snowflurry.get_num_gates_per_type — Function.

get_num_gates_per_type(circuit::QuantumCircuit)::AbstractDict{<: AbstractString, <:Integer}

Returns a dictionary listing the number of gates of each type found in the circuit.

The dictionary keys are the instruction_symbol of the gates while the values are the number of gates found.

Examples

julia> c = QuantumCircuit(qubit_count = 2);

julia> push!(c, hadamard(1), hadamard(2));

julia> push!(c, control_x(1, 2));

julia> push!(c, hadamard(2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H─────────*───────
                 |       
q[2]:───────H────X────H──
                         



julia> get_num_gates_per_type(c)
Dict{String, Int64} with 2 entries:
  "h"  => 3
  "cx" => 1

source

Snowflurry.get_num_gates — Function.

get_num_gates(circuit::QuantumCircuit)::Integer

Returns the number of gates in the circuit.

Examples

julia> c = QuantumCircuit(qubit_count = 2);

julia> push!(c, hadamard(1), hadamard(2));

julia> push!(c, control_x(1, 2))
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H─────────*──
                 |  
q[2]:───────H────X──
                    



julia> get_num_gates(c)
3

source

Snowflurry.serialize_job — Function.

serialize_job(circuit::QuantumCircuit,shot_count::Integer,host::String)

Creates a JSON-formatted String containing the circuit configuration to be sent to a QPU service located at the URL specified by host, along with the number of shots requested.

Examples

julia> c = QuantumCircuit(qubit_count = 2, instructions = [sigma_x(1)], name = "sigma_x job")
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X──
          
q[2]:─────
          
julia> serialize_job(c, 10, "http://example.anyonsys.com", "project_id")
"{\"shotCount\":10,\"name\":\"sigma_x job\",\"machineID\":\"http://example.anyonsys.com\",\"billingaccountID\":\"project_id\",\"type\":\"circuit\",\"circuit\":{\"operations\":[{\"parameters\":{},\"type\":\"x\",\"qubits\":[0]}]}}"

source

Snowflurry.transpile — Function.

transpile(::CompressSingleQubitGatesTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CompressSingleQubitGatesTranspiler transpiler stage which gathers all single-qubit gates sharing a common target in an input circuit and combines them into single Universal gates in a new circuit. Gates ordering may differ when gates are applied to different qubits, but the result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = CompressSingleQubitGatesTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [sigma_x(1), sigma_y(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X────Y──
               
q[2]:──────────
               



julia> transpiled_circuit=transpile(transpiler,circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──U(θ=0.0000,ϕ=3.1416,λ=0.0000)──
                                      
q[2]:─────────────────────────────────
                                      



julia> compare_circuits(circuit,transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 3, instructions = [sigma_x(1),sigma_y(1),control_x(2,3),phase_shift(1,π/3)])
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──X────Y─────────P(1.0472)──
                                 
q[2]:────────────*───────────────
                 |               
q[3]:────────────X───────────────
                                 



julia> transpiled_circuit=transpile(transpiler,circuit)
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──U(θ=0.0000,ϕ=-2.0944,λ=0.0000)───────
                                            
q[2]:────────────────────────────────────*──
                                         |  
q[3]:────────────────────────────────────X──
                                            




julia> compare_circuits(circuit,transpiled_circuit)
true

source

transpile(::CastSwapToCZGateTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CastSwapToCZGateTranspiler transpiler stage which expands all Swap gates into CZ gates and single-qubit gates. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = CastSwapToCZGateTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [swap(1, 2)])
Quantum Circuit Object:
   qubit_count: 2
   bit_count: 2
q[1]:──☒──
       |
q[2]:──☒──

julia> transpile(transpiler,circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:───────────*────Y_m90────────────*────Y_90─────────────*──────────
                |                     |                     |          
q[2]:──Y_m90────Z─────────────Y_90────Z────────────Y_m90────Z────Y_90──

source

transpile(::CastCXToCZGateTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CastCXToCZGateTranspiler transpiler stage which expands all CX gates into CZ and Hadamard gates. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = CastCXToCZGateTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [control_x(1, 2)])
Quantum Circuit Object:
   qubit_count: 2
   bit_count: 2
q[1]:──*──
       |
q[2]:──X──

julia> transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2
   bit_count: 2
q[1]:───────*───────
            |
q[2]:──H────Z────H──

source

transpile(::CastISwapToCZGateTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CastISwapToCZGateTranspiler transpiler stage which expands all ISwap gates into CZ gates and single-qubit gates. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = CastISwapToCZGateTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [iswap(1, 2)])
Quantum Circuit Object:
   qubit_count: 2
   bit_count: 2
q[1]:──x──
       |
q[2]:──x──

julia> transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Y_m90─────────────*────Y_90─────────────*────Y_90──────────
                         |                     |                  
q[2]:───────────X_m90────Z────────────X_m90────Z────────────X_90──

source

transpile(::CastToffoliToCXGateTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CastToffoliToCXGateTranspiler transpiler stage which expands all Toffoli gates into CX gates and single-qubit gates. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = CastToffoliToCXGateTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 3, instructions = [toffoli(1, 2, 3)])
Quantum Circuit Object:
   qubit_count: 3
   bit_count: 3
q[1]:──*──
       |
q[2]:──*──
       |
q[3]:──X──

julia> transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──────────────────*────────────────────*──────────────*─────────T──────────*──
                       |                    |              |                    |  
q[2]:───────*──────────|─────────*──────────|────T─────────X──────────────T†────X──
            |          |         |          |                                      
q[3]:──H────X────T†────X────T────X────T†────X─────────T─────────H──────────────────

source

transpile(::CastToPhaseShiftAndHalfRotationXTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CastToPhaseShiftAndHalfRotationXTranspiler transpiler stage which converts all single-qubit gates in an input circuit and converts them into combinations of PhaseShift and RotationX with angle π/2 in an output circuit. For any gate in the input circuit, the number of gates in the output varies between zero and 5. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = CastToPhaseShiftAndHalfRotationXTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [sigma_x(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X──
          
q[2]:─────
          



julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Z────X_90────Z────X_m90──
                                                 
q[2]:───────────────────────────
                                                 



julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [sigma_y(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Y──
          
q[2]:─────
          



julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2
   bit_count: 2
q[1]:──X_90────Z────X_m90──

q[2]:──────────────────────
                                           



julia> compare_circuits(circuit, transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [universal(1, 0., 0., 0.)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──U(θ=0.0000,ϕ=0.0000,λ=0.0000)──
                                      
q[2]:─────────────────────────────────
                                      



julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:
     
q[2]:
     



julia> compare_circuits(circuit, transpiled_circuit)
true

source

transpile(::CastUniversalToRzRxRzTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CastUniversalToRzRxRzTranspiler transpiler stage which finds Universal gates in an input circuit and casts them into a sequence of PhaseShift (P), RotationX (Rx) and PhaseShift (P) gates in a new circuit. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = CastUniversalToRzRxRzTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [universal(1, π/2, π/4, π/8)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──U(θ=1.5708,ϕ=0.7854,λ=0.3927)──
                                      
q[2]:─────────────────────────────────
                                      

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──P(-1.1781)────Rx(1.5708)────P(2.3562)──
                                              
q[2]:─────────────────────────────────────────
                                              

julia> compare_circuits(circuit, transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [universal(1, 0, π/4, 0)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──U(θ=0.0000,ϕ=0.7854,λ=0.0000)──
                                      
q[2]:─────────────────────────────────
                                      

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──P(-1.5708)────Rx(0.0000)────P(2.3562)──
                                              
q[2]:─────────────────────────────────────────
                                              

julia> compare_circuits(circuit,transpiled_circuit)
true

source

transpile(::CastRxToRzAndHalfRotationXTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CastRxToRzAndHalfRotationXTranspiler transpiler stage which finds RotationX(θ) gates in an input circuit and converts (casts) them into a sequence of gates: Z90,X90,PhaseShift(θ),XM90,ZM90 in a new circuit. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler=CastRxToRzAndHalfRotationXTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [rotation_x(1,π/8)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Rx(0.3927)──
                   
q[2]:──────────────
                   

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Z_90────X_90────P(0.3927)────X_m90────Z_m90──
                                                    
q[2]:───────────────────────────────────────────────
                                                    

julia> compare_circuits(circuit, transpiled_circuit)
true

source

transpile(::SimplifyRxGatesTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the SimplifyRxGatesTranspiler transpiler stage which finds RotationX gates in an input circuit and according to its angle theta, casts them to one of the right-angle RotationX gates, e.g., SigmaX, X90, or XM90. In the case where theta≈0., the gate is removed. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = SimplifyRxGatesTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [rotation_x(1, pi/2)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Rx(1.5708)──
                   
q[2]:──────────────
                   

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X_90──
             
q[2]:────────
             

julia> compare_circuits(circuit, transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [rotation_x(1, pi)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Rx(3.1416)──
                   
q[2]:──────────────
                   


julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X──
          
q[2]:─────
          

julia> compare_circuits(circuit, transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [rotation_x(1, 0.)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Rx(0.0000)──
                   
q[2]:──────────────
                   


julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:
     
q[2]:
     



julia> compare_circuits(circuit, transpiled_circuit)
true

source

transpile(::SwapQubitsForAdjacencyTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the SwapQubitsForAdjacencyTranspiler transpiler stage which adds Swap gates around multi-qubit gates so that the final Operator acts on adjacent qubits. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = SwapQubitsForAdjacencyTranspiler(LineConnectivity(6));

julia> circuit = QuantumCircuit(qubit_count = 6, instructions = [toffoli(4, 6, 1)])
Quantum Circuit Object:
   qubit_count: 6 
   bit_count: 6 
q[1]:──X──
       |  
q[2]:──|──
       |  
q[3]:──|──
       |  
q[4]:──*──
       |  
q[5]:──|──
       |  
q[6]:──*──
          




julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 6 
   bit_count: 6 
q[1]:───────────────────────────X───────────────────────────
                                |                           
q[2]:───────☒───────────────────*───────────────────☒───────
            |                   |                   |       
q[3]:──☒────☒──────────────☒────*────☒──────────────☒────☒──
       |                   |         |                   |  
q[4]:──☒──────────────☒────☒─────────☒────☒──────────────☒──
                      |                   |                 
q[5]:────────────☒────☒───────────────────☒────☒────────────
                 |                             |            
q[6]:────────────☒─────────────────────────────☒────────────
                                                            



julia> compare_circuits(circuit, transpiled_circuit)
true

source

transpile(::SimplifyRzGatesTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the SimplifyRzGatesTranspiler transpiler stage which finds PhaseShift gates in an input circuit and according to its phase angle phi, casts them to one of the right-angle RotationZ gates, e.g., SigmaZ, Z90, ZM90, Pi8 or Pi8Dagger. In the case where phi≈0., the gate is removed. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase). The tolerance used for Base.isapprox() in each case can be set by passing an optional argument to the Transpiler, e.g: transpiler=SimplifyRzGatesTranspiler(1.0e-10)

Examples

julia> transpiler = SimplifyRzGatesTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [phase_shift(1, pi/2)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──P(1.5708)──
                  
q[2]:─────────────
                  

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Z_90──
             
q[2]:────────
             

julia> compare_circuits(circuit, transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [phase_shift(1, pi)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──P(3.1416)──
                  
q[2]:─────────────
                  

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Z──
          
q[2]:─────
          

julia> compare_circuits(circuit, transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [phase_shift(1, 0.)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──P(0.0000)──
                  
q[2]:─────────────
                  

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:
     
q[2]:
     



julia> compare_circuits(circuit, transpiled_circuit)
true

source

transpile(::CompressRzGatesTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the CompressRzGatesTranspiler transpiler stage which gathers all Rz-type gates sharing a common target in an input circuit and combines them into single PhaseShift gate in a new circuit. Gates ordering may differ when gates are applied to different qubits, but the result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Examples

julia> transpiler = CompressRzGatesTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [sigma_z(1), z_90(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──Z────Z_90──
                  
q[2]:─────────────
                  

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──P(-1.5708)──
                   
q[2]:──────────────
                   

julia> compare_circuits(circuit, transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 3, instructions = [sigma_z(1), pi_8(1), control_x(2,3), z_minus_90(1)])
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──Z────T─────────Z_m90──
                             
q[2]:────────────*───────────
                 |           
q[3]:────────────X───────────
                             

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──P(2.3562)───────
                       
q[2]:───────────────*──
                    |  
q[3]:───────────────X──
                       

julia> compare_circuits(circuit, transpiled_circuit)
true

source

transpile(::RemoveSwapBySwappingGatesTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Removes the Swap gates from the circuit assuming all-to-all connectivity.

The initial state must be the ground state!

This transpiler stage assumes that the input state is $|0\rangle^{\otimes N}$ where $N$ is the number of qubits. The stage should not be used on sub-circuits where the input state is not $|0\rangle^{\otimes N}$.

This transpiler stage eliminates Swap gates by moving the gates preceding each Swap gate.

Examples

julia> transpiler = RemoveSwapBySwappingGatesTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [hadamard(1), swap(1, 2), sigma_x(2)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────☒───────
            |       
q[2]:───────☒────X──
                    



julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──────────
               
q[2]:──H────X──

source

transpile(::SimplifyTrivialGatesTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the SimplifyTrivialGatesTranspiler transpiler stage which finds gates which have no effect on the state Ket, such as Identity, and parameterized gates with null parameters such as rotation_x(target, 0.). The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase). The tolerance used for Base.isapprox() in each case can be set by passing an optional argument to the Transpiler, e.g: transpiler=SimplifyTrivialGatesTranspiler(1.0e-10)

Examples

julia> transpiler = SimplifyTrivialGatesTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [identity_gate(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──I──
          
q[2]:─────
          
julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:
     
q[2]:      

julia> compare_circuits(circuit, transpiled_circuit)
true


julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [phase_shift(1, 0.)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──P(0.0000)──
                  
q[2]:─────────────
                  

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:
     
q[2]:      

julia> compare_circuits(circuit, transpiled_circuit)
true

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [universal(1, 0., 0., 0.)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──U(θ=0.0000,ϕ=0.0000,λ=0.0000)──
                                      
q[2]:─────────────────────────────────
                                             
julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:
     
q[2]:      

julia> compare_circuits(circuit, transpiled_circuit)
true

source

transpile(::ReadoutsAreFinalInstructionsTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Ensures that each Readout Instruction is the last operation on each qubit where readouts are present, and that repeated readouts on the same qubit do not occur, or throws an error. It leaves the QuantumCircuit unchanged.

Examples

julia> transpiler = ReadoutsAreFinalInstructionsTranspiler();

julia> circuit = QuantumCircuit(qubit_count=2, instructions = [hadamard(1), readout(1,1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────✲──
               
q[2]:──────────
               

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────✲──
               
q[2]:──────────
               

julia> circuit = QuantumCircuit(qubit_count=2, instructions = [hadamard(1), readout(1,1), sigma_x(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────✲────X──
                    
q[2]:───────────────
                    

julia> transpiled_circuit = transpile(transpiler, circuit)
ERROR: AssertionError: Cannot perform `Gate` following `Readout` on qubit: 1
[...]

julia> circuit = QuantumCircuit(qubit_count=2, instructions = [readout(1,1), readout(1,2)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──✲────✲──
               
q[2]:──────────
               

julia> transpiled_circuit = transpile(transpiler, circuit)
ERROR: AssertionError: Found multiple `Readouts` on qubit: 1
[...]

source

transpile(::CircuitContainsAReadoutTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Ensures that at least one Readout Instruction is present on the QuantumCircuit, or throws an error. It leaves the QuantumCircuit unchanged.

Examples

julia> transpiler = CircuitContainsAReadoutTranspiler();

julia> circuit = QuantumCircuit(qubit_count=2, instructions = [hadamard(1), readout(1,1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────✲──
               
q[2]:──────────
               

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────✲──
               
q[2]:──────────
               

julia> circuit = QuantumCircuit(qubit_count=2, instructions = [hadamard(1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H──
          
q[2]:─────
          

julia> transpiled_circuit = transpile(transpiler, circuit)
ERROR: ArgumentError: QuantumCircuit is missing a `Readout`. Would not return any result.
[...]

source

transpile(::ReadoutsDoNotConflictTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Ensures that each Readout Instruction present on the QuantumCircuit do not have conflicting destination bit, or throws an error. It leaves the QuantumCircuit unchanged.

Examples

julia> transpiler = ReadoutsDoNotConflictTranspiler();

julia> circuit = QuantumCircuit(qubit_count=2, instructions = [hadamard(1), readout(1,1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────✲──
               
q[2]:──────────
               

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──H────✲──
               
q[2]:──────────
               

julia> circuit = QuantumCircuit(qubit_count=2, instructions = [readout(1,1), readout(2,1)])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──✲───────
               
q[2]:───────✲──
               

julia> transpiled_circuit = transpile(transpiler, circuit)
ERROR: ArgumentError: `Readouts` in `QuantumCircuit` have conflicting destination bit: 1
[...]

source

transpile(::DecomposeSingleTargetSingleControlGatesTranspiler, circuit::QuantumCircuit)::QuantumCircuit

Implementation of the DecomposeSingleTargetSingleControlGatesTranspiler transpiler stage which finds single-control, single-target Controlled gates in an input circuit and casts them into a sequence of RotationZ (Rz), ControlX, Universal (U) and PhaseShift (P) gates in a new, equivalent circuit. For reference, see Nielsen and Chuang, "Quantum Computation and Quantum Information", p180. The result of the input and output circuit on any arbitrary state Ket is unchanged (up to a global phase).

Note

If a global phase is applied by the kernel of the Controlled gate on the target qubit, this decomposition preserves it.

For instance, a rotationz(pi) kernel and a phaseshift(pi) will yield results with a phase offset.

Examples

julia> transpiler = DecomposeSingleTargetSingleControlGatesTranspiler();

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [sigma_x(1), controlled(rotation_z(2, pi), [1])])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X────────*───────
                |       
q[2]:───────Rz(3.1416)──
                        
julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X───────────────────*──────────────────────────────────────*───────────────────────────────────
                           |                                      |                                   
q[2]:───────Rz(-1.5708)────X────U(θ=0.0000,ϕ=-1.5708,λ=0.0000)────X────U(θ=0.0000,ϕ=3.1416,λ=0.0000)──
                                                                                                      
julia> compare_circuits(circuit, transpiled_circuit)
true

julia> simulate(transpiled_circuit)
4-element Ket{ComplexF64}:
0.0 + 0.0im
-0.0 + 0.0im
0.7071067811865477 - 0.7071067811865474im
0.0 + 0.0im

julia> circuit = QuantumCircuit(qubit_count = 2, instructions = [sigma_x(1), controlled(phase_shift(2, pi), [1])])
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X────────*──────
                |      
q[2]:───────P(3.1416)──
                       

julia> transpiled_circuit = transpile(transpiler, circuit)
Quantum Circuit Object:
   qubit_count: 2 
   bit_count: 2 
q[1]:──X───────────────────*──────────────────────────────────────*─────────────────────────────────────P(1.5708)──
                           |                                      |                                                
q[2]:───────Rz(-1.5708)────X────U(θ=0.0000,ϕ=-1.5708,λ=0.0000)────X────U(θ=0.0000,ϕ=3.1416,λ=0.0000)───────────────
                                                                                                                   

julia> compare_circuits(circuit,transpiled_circuit)
true

julia> simulate(circuit)
4-element Ket{ComplexF64}:
0.0 + 0.0im
0.0 + 0.0im
1.0 + 0.0im
0.0 + 0.0im

source

Snowflurry.compare_circuits — Function.

compare_circuits(c0::QuantumCircuit, c1::QuantumCircuit)::Bool

Tests for equivalence of two QuantumCircuit based on their effect on an arbitrary input state (a Ket). QuantumCircuit are equivalent if they both yield the same output for any input, up to a global phase. QuantumCircuit with different ordering of gates that apply on different targets can also be equivalent.

Note

If there are Readouts are present on either QuantumCircuit, compare_circuits checks that both circuits have readouts targeting the same qubits, and that no operations exist on those qubits following readouts.

Examples

julia> c0 = QuantumCircuit(qubit_count = 1, instructions = [sigma_x(1), sigma_y(1)])
Quantum Circuit Object:
   qubit_count: 1 
   bit_count: 1 
q[1]:──X────Y──
               



julia> c1 = QuantumCircuit(qubit_count = 1, instructions = [phase_shift(1, π)])
Quantum Circuit Object:
   qubit_count: 1  
   bit_count: 1  
q[1]:──P(3.1416)──
                  



julia> compare_circuits(c0, c1)
true            

julia> c0 = QuantumCircuit(qubit_count = 3, instructions = [sigma_x(1), sigma_y(1), control_x(2, 3)])
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──X────Y───────
                    
q[2]:────────────*──
                 |  
q[3]:────────────X──
                    



julia> c1 = QuantumCircuit(qubit_count = 3, instructions = [control_x(2, 3), sigma_x(1), sigma_y(1)])
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:───────X────Y──
                    
q[2]:──*────────────
       |            
q[3]:──X────────────
                    



julia> compare_circuits(c0, c1)
true    

julia> c2 = QuantumCircuit(qubit_count = 3, instructions = [sigma_x(1), readout(1, 1)])
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──X────✲──
               
q[2]:──────────
               
q[3]:──────────
               
julia> c3 = QuantumCircuit(qubit_count = 3, instructions = [sigma_x(1)])
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──X──
          
q[2]:─────
          
q[3]:─────
          

julia> compare_circuits(c2,c3)
false

source

Snowflurry.circuit_contains_gate_type — Function.

circuit_contains_gate_type(circuit::QuantumCircuit, gate_type::Type{<: AbstractGateSymbol})::Bool

Determines whether a type of gate is present in a circuit.

Examples

julia> circuit = QuantumCircuit(qubit_count = 1, instructions = [sigma_x(1), sigma_y(1)])
Quantum Circuit Object:
   qubit_count: 1 
   bit_count: 1 
q[1]:──X────Y──
               
julia> circuit_contains_gate_type(circuit, Snowflurry.SigmaX)
true
               
julia> circuit_contains_gate_type(circuit, Snowflurry.ControlZ)
false

source

Snowflurry.permute_qubits! — Function.

permute_qubits!(circuit::QuantumCircuit,
    qubit_mapping::AbstractDict{T,T}) where T<:Integer

Modifies a circuit by moving the gates to other qubits based on a qubit_mapping.

The dictionary qubit_mapping contains key-value pairs describing how to update the target qubits. The key indicates which target qubit to change while the associated value specifies the new qubit. All the keys in the dictionary must also be present as values and vice versa.

For instance, Dict(1 => 2) is not a valid qubit_mapping, but Dict(1 => 2, 2 => 1) is valid.

Examples

julia> c = QuantumCircuit(qubit_count = 3);

julia> push!(c, sigma_x(1), hadamard(2), sigma_y(3))
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──X────────────
                    
q[2]:───────H───────
                    
q[3]:────────────Y──                    



julia> permute_qubits!(c, Dict(1 => 3, 3 => 1))

julia> show(c)
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:────────────Y──
                    
q[2]:───────H───────
                    
q[3]:──X────────────

source

Snowflurry.permute_qubits — Function.

permute_qubits(circuit::QuantumCircuit,
    qubit_mapping::AbstractDict{T,T})::QuantumCircuit where {T<:Integer}

Returns a QuantumCircuit that is a copy of circuit but where the gates have been moved to other qubits based on a qubit_mapping.

The dictionary qubit_mapping contains key-value pairs describing how to update the target qubits. The key indicates which target qubit to change while the associated value specifies the new qubit. All the keys in the dictionary must also be present as values and vice versa.

For instance, Dict(1=>2) is not a valid qubit_mapping, but Dict(1=>2, 2=>1) is valid.

Examples

julia> c = QuantumCircuit(qubit_count = 3);

julia> push!(c, sigma_x(1), hadamard(2), sigma_y(3))
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:──X────────────
                    
q[2]:───────H───────
                    
q[3]:────────────Y──
                    



julia> permute_qubits(c, Dict(1 => 3, 3 => 1))
Quantum Circuit Object:
   qubit_count: 3 
   bit_count: 3 
q[1]:────────────Y──
                    
q[2]:───────H───────
                    
q[3]:──X────────────

source

Previous
Quantum Toolkit